A hybrid virtual–real traffic simulation approach to reproducing the spatiotemporal distribution of bridge loads

Author:

Zhou Junyong1,Wu Wenrong1,Caprani Colin C.2,Tan Zeyin1,Wei Bin3,Zhang Junping4

Affiliation:

1. School of Civil Engineering Guangzhou University Guangzhou China

2. Department of Civil Engineering Monash University Clayton Victoria Australia

3. Guangdong Jiaoke Testing Co., Ltd. Guangzhou China

4. Earthquake Engineering Research & Test Center Guangzhou University Guangzhou China

Abstract

AbstractCurrent traffic simulation approaches analyze vehicle loads and load effects from a statistical perspective; however, they fail to reproduce the spatiotemporal distribution of bridge loads and resultant load effects at every moment, hindering real‐time bridge health management. This paper proposes a two‐step hybrid virtual–real traffic simulation (HvrTS) approach to reproduce the spatiotemporal distribution of bridge loads. Vehicle load sequences are first identified using computer vision based on traffic video from two surveillance cameras installed along the bridge. Next, traffic microsimulation is optimized with the identified vehicle load sequences from the two cameras serving as the known input and validated output. Using a cable‐stayed bridge under free‐flowing traffic, the HvrTS approach achieved a weighted mean square matching error of ≤0.3 m for the vehicle longitudinal location and a matching error of ≤7% for the vehicle lane position, whereas with congested traffic, the matching errors were much higher due to the inherent complexities and challenges associated with reproducing vehicle behavior in heavily congested situations. The traffic load effects calculated via HvrTS presented excellent spatiotemporal matching with those measured by a structural health monitoring system, especially in free‐flow traffic conditions. Applications on a continuous rigid frame girder bridge further validate these findings. Hence, the proposed HvrTS approach can overcome the challenge of spatiotemporal matching between vehicle loads and load effects in field monitoring.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3