In‐fleet structural health monitoring of roadway bridges using connected and autonomous vehicles’ data

Author:

Shokravi Hoofar1,Vafaei Mohammadreza1,Samali Bijan2,Bakhary Norhisham13

Affiliation:

1. Faculty of Civil Engineering Universiti Teknologi Malaysia Skudai Malaysia

2. Centre for Infrastructure Engineering Western Sydney University Sydney Australia

3. Institute of Noise and Vibration Universiti Teknologi Malaysia Kuala Lumpur Malaysia

Abstract

AbstractDrive‐by structural health monitoring (SHM) is a cost‐efficient alternative to the direct SHM of short‐ to medium‐size bridges requiring no sensors to be installed on the structure. However, drive‐by SHM is generally known as a short‐term monitoring technique due to the challenges associated with using multiple passages of instrumented vehicles for a long time. This paper proposes combining the potentiality of connected and autonomous vehicles (CAVs) into drive‐by damage detection by introducing In‐Fleet SHM. To the authors’ knowledge, this is the first study that proposes using CAVs for SHM application in civil engineering structures. Each In‐Fleet CAV could automatically collect the vehicle's persistent and temporal data by the embedded sensors and transmit them to edge computing systems for analysis. These persistent data include type and model and temporal parameters encompassing position, speed, heading, and vertical acceleration of CAVs. Knowing the persistent and temporal data of the passing vehicles over the transportation infrastructures enables the identification of the dynamic parameters of the bridge from the vehicles’ vertical acceleration response using drive‐by techniques and, on the other hand, reconstruction of the finite element model of the passing vehicles over the supporting bridges in a near real‐time manner. In contrast to the drive‐by SHM, In‐Fleet monitoring has an expanded spatial and temporal coverage, enabling continuous near real‐time monitoring of highway bridges of the transportation network. The accuracy and resolution of the identified modal components in In‐Fleet SHM are enhanced due to the crowdsensing nature of the collected data. Furthermore, by offering a unique set of characteristics, this method fills the crucial gap in implementing Industry 4.0 technologies and digital twins for SHM of bridges.

Funder

Research Management Centre, Universiti Teknologi Malaysia

Publisher

Wiley

Reference113 articles.

1. AgileX_Robotics. (2022).AgileX open source autonomous kit.AgileX Robotics.https://global.agilex.ai/

2. AgileX_Robotics. (2023).AX‐AUTOKIT.AgileX Robotics.https://www.trossenrobotics.com/agilex.aspx

3. Alcon M. Tabani H. Abella J. Kosmidis L. &Cazorla F. J.(2020).En‐Route: On enabling resource usage testing for autonomous driving frameworks.Proceedings of the 35th annual ACM Symposium on Applied Computing Brno Czech Republic(pp.1953–1962).

4. Almanee S. Wu X. Huai Y. Chen Q. A. &Garcia J.(2021).Scenorita: Generating less‐redundant safety‐critical and motion sickness‐inducing scenarios for autonomous vehicles.ArXiv.https://doi.org/10.48550/arXiv.2112.09725

5. deAlmeida R. S. &daSilva J. G. S.(2006).A stochastic modelling of the dynamical response of highway bridge decks under traffic loads. InEuropean Conference on Computational Mechanics & C. A. Mota Soares (Eds.) III European conference on computational mechanics. (pp.739).Springer.https://doi.org/10.1007/1‐4020‐5370‐3_739

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3