Affiliation:
1. Department of Mechanical Convergence Engineering Hanyang University Seoul Republic of Korea
Abstract
AbstractThis study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.
Funder
Korea Electric Power Corporation
Korea Institute of Energy Technology Evaluation and Planning
Ministry of Trade, Industry and Energy
National Research Foundation of Korea
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献