Unmanned aerial vehicle–human collaboration route planning for intelligent infrastructure inspection

Author:

Pan Yue1,Li Linfeng1,Qin Jianjun12,Chen Jin‐Jian1,Gardoni Paolo3

Affiliation:

1. State Key Laboratory of Ocean Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure School of Naval Architecture, Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China

2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education Harbin Institute of Technology Harbin China

3. Department of Civil and Environmental Engineering University of Illinois at Urbana–Champaign Urbana Illinois USA

Abstract

AbstractMotivated by the strengths of unmanned aerial vehicle (UAV), the UAV–human collaboration route planning (UHCRP) for intelligent infrastructure inspection is a problem worthy of discussion to help reduce human costs and minimize the risk of noninspected infrastructures under limited resources. To facilitate UHCRP, this paper proposes a novel deep reinforcement learning (DRL)‐based approach to well handle multi‐source uncertain features and constraints at a fast speed. To begin with, UHCRP is mathematically described and reformulated as a dual interdependent deep reinforcement learning (diDRL) framework to reflect real‐world scenarios. Afterward, a novel policy network named the attention‐based deep neural network (A‐DNN) is introduced to learn the route planning decisions for the combinatorial optimization problem. In particular, A‐DNN is made up of an encoder and a dual decoder for UAV and human inspection, where the multi‐head attention mechanism is incorporated to generate richer representations for model performance improvement. Performance of the proposed dual multi‐head attention model (DAM) has been tested in simulations and a real‐world case study regarding wind farm inspection. Results indicate that DAM under the sampling decoding strategy can deliver a high‐quality path plan and show better generalizability for larger scale problem sizes compared to single‐head attention model (SAM), multi‐head attention model (AM), and two baseline models, namely OR‐Tools and genetic algorithm. Moreover, DAM trained by randomly generated data can be directly employed to solve the practical problem with standardization of inputs. Overall, DRL integrates decision‐making for inspection method selection and inspected infrastructure selection, providing adaptive and intelligent inspection path planning for UAV and human in complex and dynamic engineering environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3