Material augmented semantic segmentation of point clouds for building elements

Author:

Liang Houhao1,Yeoh Justin K. W.1,Chua David K. H.1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Design and Engineering National University of Singapore Singapore Singapore

Abstract

AbstractPoint clouds are utilized to enable automated engineering applications for their ability to represent spatial geometry. However, they inherently lack detailed surface textures, posing challenges in differentiating objects at the texture level. Hence, this study introduces a 2D–3D fusing approach, leveraging material properties recognized from registered images as an augmented feature to enhance deep learning methods for the segmentation of building elements within point clouds. The proposed method was evaluated quantitatively on a 3D indoor data set with an implementation in an office room. The results are promising, showing improvement in recognition performance, particularly for objects with similar geometry but having different material properties. For instance, the segmentation of boards increased by 70.87%, and doors improved by 41.06% using the PointNet architecture. This enhanced segmentation not only reduces the time for interpreting point clouds but also has the potential to benefit downstream applications such as Scan‐to‐building information modeling (BIM), as defining regions for objects is essential.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3