Geoacoustic and geophysical data‐driven seafloor sediment classification through machine learning algorithms with property‐centered oversampling techniques

Author:

Park Junghee1,Lee Jong‐Sub2,Yoon Hyung‐Koo3

Affiliation:

1. Department of Civil and Environmental Engineering Incheon National University Incheon Republic of Korea

2. School of Civil Environmental and Architectural Engineering Korea University Seoul Republic of Korea

3. Department of Construction and Disaster Prevention Engineering Daejeon University Daejeon Republic of Korea

Abstract

AbstractThis study aims to classify seafloor sediments using physics‐inspired and data‐driven soil models combined with machine learning algorithms and oversampling techniques. The field data used for the input variables include porosity, S‐ and P‐wave velocities and depth. The soil information reported in the original literature and the “six reference sediments” and effective stress‐versus‐depth models proposed by the previous study confirm the sediment type across all of the input variables. We use three machine learning algorithms and four oversampling methods to enhance the performance accuracy and overcome data imbalance in the minority class. The results show that the averaged accuracy of sediment classification with original data corresponds to 0.88 for porosity, 0.61 for S‐wave velocity, and 0.97 for P‐wave velocity. In particular, the enhanced accuracy with oversampled input variables becomes more pronounced when the depth data are considered in a dataset. The class‐oriented grouping method newly proposed in this study appears to be a robust approach to enhancing performance. Surprisingly, model‐based input variables lead to the best performance in all cases. The proposed analyses conducted using machine learning algorithms and oversampling techniques within the physics‐inspired models could be extended to obtain a first‐order assessment of marine sediment properties.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3