Enhancing point cloud semantic segmentation in the data‐scarce domain of industrial plants through synthetic data

Author:

Noichl Florian1ORCID,Collins Fiona C.1ORCID,Braun Alexander1ORCID,Borrmann André1ORCID

Affiliation:

1. Chair of Computational Modeling and Simulation Technical University of Munich Munich Germany

Abstract

AbstractDigitizing existing structures is essential for applying digital methods in architecture, engineering, and construction. However, the adoption of data‐driven techniques for transforming point cloud data into useful digital models faces challenges, particularly in the industrial domain, where ground truth datasets for training are scarce. This paper investigates a solution leveraging synthetic data to train data‐driven models effectively. In the investigated industrial domain, the complex geometry of building elements often leads to occlusions, limiting the effectiveness of conventional sampling‐based synthetic data generation methods. Our approach proposes the automatic generation of realistic and semantically enriched ground truth data using surface‐based sampling methods and laser scan simulation on industry‐standard 3D models. In the presented experiments, we use a neural network for point cloud semantic segmentation to demonstrate that compared to sampling‐based alternatives, simulation‐based synthetic data significantly improve mean class intersection over union performance on real point cloud data, achieving up to 7% absolute increase.

Publisher

Wiley

Reference84 articles.

1. Agapaki E.(2020).Automated object segmentation in existing industrial facilities[Doctoral dissertation University of Cambridge].https://doi.org/10.17863/CAM.52102

2. CLOI-NET: Class segmentation of industrial facilities’ point cloud datasets

3. Prioritizing object types for modelling existing industrial facilities

4. Amazon Web Services. (2021).Data labeling—Amazon SageMaker ground truth—AWS.https://aws.amazon.com/sagemaker/groundtruth/

5. Armeni I. Sener O. Zamir A. R. Jiang H. Brilakis I. Fischer M. &Savarese S.(2016).3D semantic parsing of large‐scale indoor spaces.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Las Vegas NV(pp.1534–1543).https://doi.org/10.1109/CVPR.2016.170

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3