Multi‐view stereo for weakly textured indoor 3D reconstruction

Author:

Wang Tao1,Gan Vincent J. L.12

Affiliation:

1. Department of the Built Environment National University of Singapore Singapore Singapore

2. Centre for 5G Digital Building Technology National University of Singapore Singapore Singapore

Abstract

AbstractA 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3