A controllable generative model for generating pavement crack images in complex scenes

Author:

Zhang Hancheng12,Qian Zhendong1,Zhou Wei1,Min Yitong1,Liu Pengfei2

Affiliation:

1. Intelligent Transportation System Research Center Southeast University Nanjing China

2. Institute of Highway Engineering RWTH Aachen University Aachen Germany

Abstract

AbstractExisting crack recognition methods based on deep learning often face difficulties when detecting cracks in complex scenes such as brake marks, water marks, and shadows. The inadequate amount of available data can be primarily attributed to this factor. To address this issue, a controllable generative model of pavement cracks is proposed that can generate crack images in complex scenes by leveraging background images and crack mask images. The proposed model, the crack diffusion model (CDM), is based on the diffusion model network, which enables better control over the position and morphology of cracks by adjusting the conditional input of cracks. Experiments show that CDM has several advantages, including high definition, controllability, and sensitivity to narrow cracks. Utilizing CDM to create a synthetic crack data set in complex scenes resulted in substantial improvements of crack detection and segmentation. The method proposed in this study can effectively alleviate the effort required for data acquisition and labeling, especially in complex scenes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference55 articles.

1. A dynamic ensemble learning algorithm for neural networks

2. Crack detection in pavement images based on a self‐adaptive niche algorithm;Bai P.;Journal of Applied Science and Engineering,2021

3. Crack Detection Based on Generative Adversarial Networks and Deep Learning

4. TOOD: Task-aligned One-stage Object Detection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3