Prior knowledge‐infused neural network for efficient performance assessment of structures through few‐shot incremental learning

Author:

Chen Shi‐Zhi1,Feng De‐Cheng2,Taciroglu Ertugrul3

Affiliation:

1. School of Highway Chang'an University Xi'an China

2. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education Southeast University Nanjing China

3. Department of Civil & Environmental Engineering University of California Los Angeles California USA

Abstract

AbstractStructural seismic safety assessment is a critical task in maintaining the resilience of existing civil and infrastructures. This task commonly requires accurate predictions of structural responses under stochastic intensive ground accelerations via time‐costly numerical simulations. While numerous studies have attempted to use machine learning (ML) techniques as surrogate models to alleviate this computing burden, a large number of numerical simulations are still required for training ML models. Therefore, this study proposes a prior knowledge‐infused neural network (PKNN) for achieving efficient structural seismic response predictions and seismic safety assessment at a low computation cost. In this approach, first, the prior knowledge inherently within a theoretical dynamic model of a structure is infused into a neural network. Then, by utilizing the few‐shot incremental learning technique, this network would be further fine‐tuned by only a few numerical simulations. The resulting PKNN would be able to accurately predict the seismic response of a structure and facilitate seismic safety assessment. In this study, the PKNN's accuracy and computational efficiency are validated on a typical frame structure. The results revealed that the proposed PKNN could be used for accurately predicting the structural seismic responses and assessing the structural safety under a low computational cost.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3