Facets of functional diversity support niche‐based explanations for Australian biodiversity gradients

Author:

Andrew Margaret E.1ORCID,Bolton Douglas K.2,Rickbeil Gregory J. M.2,Coops Nicholas C.2ORCID

Affiliation:

1. Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia

2. Department of Forest Resource Management University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractAimThere is widespread support that species richness increases with the available energy of an ecosystem, but the mechanisms underlying this driver of biodiversity patterns remain elusive. We evaluated gradients of functional diversity to test whether the higher species richness of productive, structurally diverse environments is due to a greater range of niches being supported by the abiotic conditions present (environmental filtering), greater availability of biotic resource and habitat niches (more niches) or increasing functional similarity of species (niche packing).LocationAustralia.TaxonBirds and mammals.MethodsWe used structural equation modelling to evaluate the relative contributions of climatic harshness (actual evapotranspiration, AET) and the availability of resource (gross primary productivity, GPP) and habitat (tree height) niches on taxonomic richness and functional richness, dispersion and evenness. We performed parallel analyses within 15 bioclimatic zones and continentally to evaluate the scaling of biodiversity gradients and the shifting balance between niche‐based mechanisms along environmental gradients.ResultsAll continental diversity gradients were primarily associated with energy variables, but while species richness of both taxa and all functional diversity measures of bird assemblages increased with AET, mammal functional diversity was more strongly associated with GPP gradients. Results were more variable at the regional scale, but species richness gradients along tree height (birds and mammals) and GPP (mammals) within bioclimatic zones tended not to be paralleled by increases in functional richness or dispersion.Main ConclusionsThe niche‐based explanations of biodiversity gradients varied in importance with scale, position on environmental gradients and taxonomic group. At the continental extent, bird biodiversity gradients were structured by environmental filtering by climatic harshness, while mammal biodiversity was related to the increasing availability of resource niches with increasing productivity. Niche packing was more prominent at the regional scale, especially in bioclimatic zones where productivity and vegetation height were less limiting, and in mammal assemblages, suggesting that biodiversity patterns scale differently for birds and mammals.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3