Associating the structure of Lepidoptera‐plant interaction networks across clades and life stages to environmental gradients

Author:

Ho Hsi‐Cheng12ORCID,Altermatt Florian13ORCID

Affiliation:

1. Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

2. Institute of Ecology and Evolutionary Biology National Taiwan University Taipei Taiwan

3. Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland

Abstract

AbstractAimThe spatial‐structural patterns of plant‐insect interaction networks, particularly their associations with landscape‐scale environmental factors, remain poorly understood. We apply data‐driven network constructions that integrate biogeographic and trophic interaction knowledge to uncover how Lepidoptera‐plant networks vary across environmental gradients in a real‐world landscape.LocationThe 36,000 km2 German state Baden‐Württemberg, Central Europe.TaxonLepidoptera insects and angiosperm plants.Materials and MethodsWe integrated extensive data of Lepidoptera‐plant occurrences and interactions to infer local interaction networks across Baden‐Württemberg, encompassing 3148 plant and 980 Lepidoptera species, covering butterflies, Noctuoid moths, Geometrid moths, and Bombycoid moths. We quantified clade‐ and life‐stage‐specific network structures and related them to GIS‐informed environmental conditions, thereby revealing the spatial (environmental) patterns and potential drivers of network variations.ResultsSpanning shared environmental gradients, Lepidoptera clades and life stages formed various interaction structures with plants and exhibit distinct spatial‐structural patterns. For all Lepidoptera groups, except Geometrid moths, potential diet across life stages broadened toward low‐elevation farmlands. The larval and adult networks of butterflies became less modular with farmland coverage; the same for adult Noctuoid moths, but the inverse for adult Geometrid moths. With increasing elevation, the larval and adult networks of Noctuoid moths became less and more modular, respectively, whereas Geometrid adult networks became more modular. While the adult dietary niche of butterflies overlapped more at low elevation, those of Noctuoid and Geometrid moths further associated with land cover and overlapped more toward low‐ and high‐elevation farmlands, respectively.Main ConclusionsThe spatial‐structural patterns of Lepidoptera‐plant networks vary along geo‐climate and land‐cover gradients in ways depending on the Lepidoptera's clade and life stage. The driving mechanisms likely include both evolutionary (e.g., resource‐consumer [co‐]evolution) and ecological (e.g., competitive exclusion) processes, and differentially affect Lepidoptera across clades and life stages. These findings pinpoint conservation implications at both species and community levels, with potential trade‐offs for managing different Lepidoptera‐plant communities under environmental changes.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3