Elucidating climatic drivers of photosynthesis by tropical forests

Author:

Wang Yuan1ORCID,Liu Junjie12,Wennberg Paul O.13,He Liyin1ORCID,Bonal Damien4,Köhler Philipp1,Frankenberg Christian1,Sitch Stephen5,Friedlingstein Pierre6

Affiliation:

1. Division of Geological and Planetary Sciences California Institute of Technology Pasadena California USA

2. Jet Propulsion Laboratory California Institute of Technology Pasadena California USA

3. Division of Engineering and Applied Science California Institute of Technology Pasadena California USA

4. Université de Lorraine AgroParisTech, INRAE, UMR Silva Nancy France

5. College of Life and Environmental Sciences University of Exeter Exeter UK

6. College of Engineering, Mathematics and Physical Sciences University of Exeter Exeter UK

Abstract

AbstractTropical forests play a pivotal role in regulating the global carbon cycle. However, the response of these forests to changes in absorbed solar energy and water supply under the changing climate is highly uncertain. Three‐year (2018–2021) spaceborne high‐resolution measurements of solar‐induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) provide a new opportunity to study the response of gross primary production (GPP) and more broadly tropical forest carbon dynamics to differences in climate. SIF has been shown to be a good proxy for GPP on monthly and regional scales. Combining tropical climate reanalysis records and other contemporary satellite products, we find that on the seasonal timescale, the dependence of GPP on climate variables is highly heterogeneous. Following the principal component analyses and correlation comparisons, two regimes are identified: water limited and energy limited. GPP variations over tropical Africa are more correlated with water‐related factors such as vapor pressure deficit (VPD) and soil moisture, while in tropical Southeast Asia, GPP is more correlated with energy‐related factors such as photosynthetically active radiation (PAR) and surface temperature. Amazonia is itself heterogeneous: with an energy‐limited regime in the north and water‐limited regime in the south. The correlations of GPP with climate variables are supported by other observation‐based products, such as Orbiting Carbon Observatory‐2 (OCO2) SIF and FluxSat GPP. In each tropical continent, the coupling between SIF and VPD increases with the mean VPD. Even on the interannual timescale, the correlation of GPP with VPD is still discernable, but the sensitivity is smaller than the intra‐annual correlation. By and large, the dynamic global vegetation models in the TRENDY v8 project do not capture the high GPP seasonal sensitivity to VPD in dry tropics. The complex interactions between carbon and water cycles in the tropics illustrated in this study and the poor representation of this coupling in the current suite of vegetation models suggest that projections of future changes in carbon dynamics based on these models may not be robust.

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3