Plant interaction networks reveal the limits of our understanding of diversity maintenance

Author:

Bimler Malyon D.1ORCID,Stouffer Daniel B.2ORCID,Martyn Trace E.34ORCID,Mayfield Margaret M.15ORCID

Affiliation:

1. School of BioSciences The University of Melbourne Parkville Victoria Australia

2. Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Christchurch New Zealand

3. Eastern Oregon Agriculture Research Center‐Union Experiment Station, Department of Animal and Rangeland Sciences Oregon State University Corvallis Oregon USA

4. Eastern Oregon Agriculture and Natural Resource Program Oregon State University Oregon USA

5. School of Biological Sciences The University of Queensland Brisbane Queensland Australia

Abstract

AbstractSpecies interactions are key drivers of biodiversity and ecosystem stability. Current theoretical frameworks for understanding the role of interactions make many assumptions which unfortunately, do not always hold in natural, diverse communities. This mismatch extends to annual plants, a common model system for studying coexistence, where interactions are typically averaged across environmental conditions and transitive competitive hierarchies are assumed to dominate. We quantify interaction networks for a community of annual wildflowers in Western Australia across a natural shade gradient at local scales. Whilst competition dominated, intraspecific and interspecific facilitation were widespread in all shade categories. Interaction strengths and directions varied substantially despite close spatial proximity and similar levels of local species richness, with most species interacting in different ways under different environmental conditions. Contrary to expectations, all networks were predominantly intransitive. These findings encourage us to rethink how we conceive of and categorize the mechanisms driving biodiversity in plant systems.

Funder

New Zealand Government

Botany Foundation, Faculty of Science, University of Melbourne

Australian Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3