CovNet: Covariance Networks for Functional Data on Multidimensional Domains

Author:

Sarkar Soham12,Panaretos Victor M.34

Affiliation:

1. Theoretical Statistics and Mathematics Unit , , New Delhi , India

2. Indian Statistical Institute, Delhi Centre , , New Delhi , India

3. Institut de Mathématiques , , Lausanne , Switzerland

4. École Polytechnique Fédérale de Lausanne , , Lausanne , Switzerland

Abstract

AbstractCovariance estimation is ubiquitous in functional data analysis. Yet, the case of functional observations over multidimensional domains introduces computational and statistical challenges, rendering the standard methods effectively inapplicable. To address this problem, we introduce Covariance Networks (CovNet) as a modelling and estimation tool. The CovNet model is universal—it can be used to approximate any covariance up to desired precision. Moreover, the model can be fitted efficiently to the data and its neural network architecture allows us to employ modern computational tools in the implementation. The CovNet model also admits a closed-form eigendecomposition, which can be computed efficiently, without constructing the covariance itself. This facilitates easy storage and subsequent manipulation of a covariance in the context of the CovNet. We establish consistency of the proposed estimator and derive its rate of convergence. The usefulness of the proposed method is demonstrated via an extensive simulation study and an application to resting state functional magnetic resonance imaging data.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference41 articles.

1. Neural Network Learning

2. Evaluating stationarity via change-point alternatives with applications to fMRI data;Aston;The Annals of Applied Statistics,2012

3. Tests for separability in nonparametric covariance operators of random surfaces;Aston;The Annals of Statistics,2017

4. A test for separability in covariance operators of random surfaces;Bagchi;The Annals of Statistics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3