Bayesian Context Trees: Modelling and Exact Inference for Discrete Time Series

Author:

Kontoyiannis Ioannis123,Mertzanis Lambros45,Panotopoulou Athina67,Papageorgiou Ioannis83,Skoularidou Maria93

Affiliation:

1. Statistical Laboratory , Cambridge , UK

2. Centre for Mathematical Sciences , Cambridge , UK

3. University of Cambridge , Cambridge , UK

4. Department of Electrical and Computer Engineering , Maryland , USA

5. University of Maryland , Maryland , USA

6. Department of Computer Science , Hanover , New Hampshire , USA

7. Dartmouth College , Hanover , New Hampshire , USA

8. Department of Engineering , Cambridge , UK

9. MRC-BSU , Cambridge , UK

Abstract

Abstract We develop a new Bayesian modelling framework for the class of higher-order, variable-memory Markov chains, and introduce an associated collection of methodological tools for exact inference with discrete time series. We show that a version of the context tree weighting alg-orithm can compute the prior predictive likelihood exa-ctly (averaged over both models and parameters), and two related algorithms are introduced, which identify the a posteriori most likely models and compute their exact posterior probabilities. All three algorithms are deterministic and have linear-time complexity. A family of variable-dimension Markov chain Monte Carlo samplers is also provided, facilitating further exploration of the posterior. The performance of the proposed methods in model selection, Markov order estimation and prediction is illustrated through simulation experiments and real-world applications with data from finance, genetics, neuroscience and animal communication. The associated algorithms are implemented in the R package BCT.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference84 articles.

1. The synoptic problem: on Matthew's and Luke's use of Mark;Abakuks;Journal of the Royal Statistical Society: Series A,2012

2. The Wang-Landau algorithm for Monte Carlo computation in general state spaces;Atchade;Statistica Sinica,2004

3. The minimum description length principle in coding and modeling;Barron;IEEE Transactions on Information Theory,1998

4. Risk bounds for model selection via penalization;Barron;Probability Theory and Related Fields,1999

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3