Curvature‐driven Multi‐stream Network for Feature‐preserving Mesh Denoising

Author:

Zhao Zhibo1,Tang Wenming2,Gong Yuanhao1

Affiliation:

1. College of Electronics and Information Engineering Shenzhen University Shenzhen China

2. School of Intelligent Manufacturing and Equipment Shenzhen Institute of Information Technology Shenzhen China

Abstract

AbstractMesh denoising is a fundamental yet challenging task. Most of the existing data‐driven methods only consider the zero‐order information (vertex location) and first‐order information (face normal). However, higher‐order geometric information (such as curvature) is more descriptive for the shape of the mesh. Therefore, in order to impose such high‐order information, this paper proposes a novel Curvature‐Driven Multi‐Stream Graph Convolutional Neural Network (CDMS‐Net) architecture. CDMS‐Net has three streams, including curvature stream, face normal stream and vertex stream, where the curvature stream focuses on the high‐order Gaussian curvature information. Moreover, CDMS‐Net proposes a novel block based on residual dense connections, which is used as the core component to extract geometric features from meshes. This innovative design improves the performance of feature‐preserving denoising. The plug‐and‐play modular design makes CDMS‐Net easy to be implemented. Multiple sets of ablation study are carried out to verify the rationality of the CDMS‐Net. Our method establishes new state‐of‐the‐art mesh denoising results on publicly available datasets.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference45 articles.

1. Mesh Denoising with Facet Graph Convolutions

2. [FDCO03] FleishmanS. DroriI. Cohen‐OrD.:Bilateral mesh denoising. InACM SIGGRAPH 2003 Papers(2003) pp.950–953.

3. [FL19] FeyM. LenssenJ. E.:Fast graph representation learning with PyTorch Geometric. InICLR Workshop on Representation Learning on Graphs and Manifolds(2019).

4. GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss

5. Weighted mean curvature

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EGGS: Edge Guided Gaussian Splatting for Radiance Fields;Proceedings of the 29th International ACM Conference on 3D Web Technology;2024-09-25

2. Axis-Aligned Gaussian Splatting for Radiance Fields;Proceedings of the 2024 8th International Conference on High Performance Compilation, Computing and Communications;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3