Hypothesized life cycle of the snow algae Chlainomonas sp. (Chlamydomonadales, Chlorophyta) from the Cascade Mountains, USA

Author:

Matsumoto Maya1,Hanneman Clare1,Camara A. G.1,Krueger‐Hadfield Stacy A.23ORCID,Hamilton Trinity L.4ORCID,Kodner Robin B.5ORCID

Affiliation:

1. Department of Biology Western Washington University Bellingham Washington USA

2. Department of Biology University of Alabama at Birmingham Birmingham Alabama USA

3. Virginia Institute of Marine Science Eastern Shore Laboratory Wachapreague Virginia USA

4. Plant and Microbial Biology Department and the Biotechnology Institute University of Minnesota Saint Paul Minnesota USA

5. Department of Environmental Science Western Washington University Bellingham Washington USA

Abstract

AbstractChlainomonas (Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. No Chlainomonas species have been successfully cultured in the laboratory, but diverse cell types have been observed from many field‐collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017–2023), we observed seasonal blooms dominated by a Chlainomonas species from late spring through the summer months on a snow‐on‐lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley Lake Chlainomonas is distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in other Chlainomonas species, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles.

Funder

National Science Foundation

Publisher

Wiley

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3