How Will It Drape Like? Capturing Fabric Mechanics from Depth Images

Author:

Rodriguez‐Pardo Carlos123ORCID,Prieto‐Martin Melania2ORCID,Casas Dan2ORCID,Garces Elena12ORCID

Affiliation:

1. SEDDI Madrid Spain

2. Universidad Rey Juan Carlos Madrid Spain

3. Universidad Carlos III de Madrid Spain

Abstract

AbstractWe propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically‐correct digital representations of real‐world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non‐expert operators. To this end, we propose a sim‐to‐real strategy to train a learning‐based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim‐to‐real loop. Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference82 articles.

1. BommasaniR. HudsonD. A. AdeliE. AltmanR. AroraS. vonArxS. BernsteinM. S. BohgJ. BosselutA. BrunskillE. et al.:On the opportunities and risks of foundation models. 3

2. Estimating mechanical properties of cloth from videos using dense motion trajectories: Human psychophysics and machine learning

3. BoumanK. L. XiaoB. BattagliaP. FreemanW. T.: Estimating the material properties of fabric from video. InProc. IEEE International Conference on Computer Vision(2013) pp.1984–1991. 2 3

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3