Learning to Learn and Sample BRDFs

Author:

Liu Chen1,Fischer Michael1,Ritschel Tobias1

Affiliation:

1. University College London

Abstract

AbstractWe propose a method to accelerate the joint process of physically acquiring and learning neural Bi‐directional Reflectance Distribution Function (BRDF) models. While BRDF learning alone can be accelerated by meta‐learning, acquisition remains slow as it relies on a mechanical process. We show that meta‐learning can be extended to optimize the physical sampling pattern, too. After our method has been meta‐trained for a set of fully‐sampled BRDFs, it is able to quickly train on new BRDFs with up to five orders of magnitude fewer physical acquisition samples at similar quality. Our approach also extends to other linear and non‐linear BRDF models, which we show in an extensive evaluation.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference65 articles.

1. ArnoldS. M. R. MahajanP. DattaD. BunnerI. ZarkiasK. S.:learn2learn: A library for Meta‐Learning research.

2. BergmanA. W. KellnhoferP. WetzsteinG.: Fast training of neural lumigraph representations using meta learning. InNeurIPS(2021).

3. An Adaptive BRDF Fitting Metric

4. Physically‐based shading at Disney;Burley B.;ACM SIGGRAPH,2012

5. BouchardG. TrouillonT. PerezJ. GaidonA.:Online learning to sample 2016. arXiv:1506.09016.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and user-friendly visualization of neural relightable images for cultural heritage applications;Journal on Computing and Cultural Heritage;2024-08-28

2. Neural Bounding;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Neural Semantic Surface Maps;Computer Graphics Forum;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3