Deep learning–based nondestructive evaluation of reinforcement bars using ground‐penetrating radar and electromagnetic induction data

Author:

Li Xiaofeng1,Liu Hai2,Zhou Feng1,Chen Zhongchang1,Giannakis Iraklis3,Slob Evert4

Affiliation:

1. School of Mechanical Engineering and Electronic Information China University of Geosciences (Wuhan) Hubei China

2. School of Civil Engineering Guangzhou University Guangdong China

3. School of Geosciences University of Aberdeen Scotland UK

4. Department of Geoscience & Engineering Delft University of Technology Zuid‐Holland The Netherlands

Abstract

AbstractThis paper proposes a nondestructive evaluation method based on deep learning using combined ground‐penetrating radar (GPR) and electromagnetic induction (EMI) data for autonomic and accurate estimation of the cover thickness and diameter of reinforcement bars. A real‐time object detection algorithm—You Only Look Once–version 3 (YOLO v3)—is adopted to automatically identify the reinforcement bar reflected signals from radargrams, with which the range of the cover thickness is roughly predicted. Subsequently, EMI data, accompanied with the cover thickness range, are imported to a one‐dimensional convolutional neural network (1D CNN), pretrained by calibrated EMI and GPR data, to simultaneously estimate the cover thickness and reinforcement bar diameter. Testing with the on‐site GPR data shows that YOLO v3 is superior to Single Shot Multibox Detector method in GPR hyperbolic signal identification. Testing of 1D CNN with the EMI and GPR data collected in an in‐house sand pit experiment shows that the estimation accuracy of the cover thickness and reinforcement bar diameter is, respectively, 96.8% and 90.3% with a permissible error of 1 mm. Further, an experiment with concrete specimens demonstrates that among the 22 estimated values (including the reinforcement bar diameter and cover thickness), there are 17 values accurately estimated, while the inaccurately estimated values have an error up to 2 mm. The experimental results show that the proposed method can autonomically evaluate the reinforcement bar diameter and cover thickness with a high accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3