Diversity, Variance, and Stability of Root Phenes of Peanut (Arachis hypogaea L.)

Author:

Li Lijie12,Li Qian1,Liu Yanli3,Xue Huiyun1ORCID,Zhang Xiaotian1,Wang Bin1,Pan Xiaoping2,Zhang Zhiyong1,Zhang Baohong2ORCID

Affiliation:

1. Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology Xinxiang Henan China

2. Department of Biology East Carolina University Greenville NC US

3. Institute of economic crops, Xinxiang Academy of Agricultural Sciences Henan China

Abstract

AbstractRoot phenes are associated with the absorptive efficiency of water and fertilizers. However, there are few reports on the genetic variation and stability of peanut (Arachis hypogaea L.) root architecture under different environments. In this study, the diversity, variance and stability of root phenes of 89 peanut varieties were investigated with shovelomics (high throughput phenotyping of root system architecture) for two years in both field and laboratory experiments. The root phenes of these peanut genotypes presented rich diversity; for example, the value of total root length (TRL) ranged from 347.84 cm to 1013.80 cm in the field in 2018, and from 55.14 cm to 206.22 cm in the laboratory tests. The root phenes of different genotypes varied differently; for example, the coefficient of variation (CV) of TRL ranged from 24.0 to 83.5 across the two‐year field test. Field and laboratory evaluations were highly correlated, especially on lateral root density (LRD) and root angle (RA), and the quadrant graph analysis of LRD and RA implied that 69.7% of the roots belong to the same type. These not only further reflect root phenes stability through different environment but also demonstrate that some root phenes identified at early stage can indicate their status at later growth stage. In addition, root phenes showed a strong correlation with shoot growth, especially root dry weight (RDW), TRL and(nodule number)NN. Thus, laboratory tests in combination with field shovelomics can efficiently screen and select genotypes with contrasting root phenes to optimize water and nutrient management.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3