Generation of aroma in three‐line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2 (OsBADH2)

Author:

Liao Yongxiang1,Li Mengyuan1,Wu Hezhou2,Liao Yingxiu1,Xin Jialu1,Yuan Xinmiao1,Li Yong1,Wei Aiji1,Zou Xuemei1,Guo Daiming1,Xue Zhenzhen1,Zhu Guoxu1,Wang Zhaoning1,Xu Peizhou1,Zhang Hongyu1,Chen Xiaoqiong1,Du Kangxi1,Zhou Hao1,Xia Duo1,Ali Asif1ORCID,Wu Xianjun1

Affiliation:

1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Rice Research Institute, Sichuan Agricultural University Chengdu China

2. Hu Nan Tao Hua Yuan Agriculture Technology Co., LTD Changde China

Abstract

AbstractAroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2‐acetyl‐1‐pyrroline (2‐AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three‐line hybrid restorer line Shu‐Hui‐313 (SH313). We created knock‐out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000‐grain weight) were significantly decreased. These KO lines were crossed with a non‐aromatic three‐line hybrid rice male sterile line (Rong‐7‐A) to produce Rong‐7‐You‐626 (R7Y626), R7Y627 and R7Y628. The measurement of 2‐AP revealed significantly increased contents in these cross combinations. We compared the content of 2‐AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2‐AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non‐aromatic hybrids, and outlines a straightforward identification under field conditions.

Funder

Science and Technology Department of Sichuan Province

Chengdu Science and Technology Bureau

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3