Display optimization under the multinomial logit choice model: Balancing revenue and customer satisfaction

Author:

Feldman Jacob1,Jiang Puping2

Affiliation:

1. Olin Business School, Washington University in St. Louis, St. Louis, Missouri, USA

2. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China

Abstract

In this paper, we consider an assortment optimization problem in which a platform must choose pairwise disjoint sets of assortments to offer across a series of T stages. Arriving customers begin their search process in the first stage, and progress sequentially through the stages until their patience expires, at which point they make a multinomial logit–based purchasing decision from among all products they have viewed throughout their search process. The goal is to choose the sequential displays of product offerings to maximize expected revenue. Additionally, we impose stage‐specific constraints that ensure that as each customer progresses farther and farther through the T stages, there is a minimum level of “desirability” met by the collections of displayed products. We consider two related measures of desirability: purchase likelihood and expected utility derived from the offered assortments. In this way, the offered sequence of assortments must be both high earning and well liked, which breaks from the traditional assortment setting, where customer‐centric considerations are generally not explicitly accounted for. We show that our assortment problem of interest is strongly NP‐Hard, thus ruling out the existence of a fully polynomial‐time approximation scheme (FPTAS). From an algorithmic standpoint, as a warm‐up, we develop a simple constant factor approximation scheme in which we carefully stitch together myopically selected assortments for each stage. Our main algorithmic result consists of a polynomial‐time approximation scheme (PTAS), which combines a handful of structural results related to the make‐up of the optimal assortment sequence within an approximate dynamic programming framework. We also provide an additional approximation scheme, which, under mild assumptions, can handle a cardinality constraint that enforces that an exact number of new products are introduced at each stage. Using an extensive set of numerical experiments, we demonstrate that both algorithms exhibit excellent practical performance, producing sequences of assortments that are, on average, always within 2% of optimal.

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3