Affiliation:
1. School of Business Sun Yat‐sen University Guangzhou China
2. Department of Management Science and Engineering Stanford University Stanford California USA
Abstract
AbstractCVaR (Conditional value at risk) is a risk metric widely used in finance. However, dynamically optimizing CVaR is difficult, because it is not a standard Markov decision process (MDP) and the principle of dynamic programming fails. In this paper, we study the infinite‐horizon discrete‐time MDP with a long‐run CVaR criterion, from the view of sensitivity‐based optimization. By introducing a pseudo‐CVaR metric, we reformulate the problem as a bilevel MDP model and derive a CVaR difference formula that quantifies the difference of long‐run CVaR under any two policies. The optimality of deterministic policies is derived. We obtain a so‐called Bellman local optimality equation for CVaR, which is a necessary and sufficient condition for locally optimal policies and only necessary for globally optimal policies. A CVaR derivative formula is also derived for providing more sensitivity information. Then we develop a policy iteration type algorithm to efficiently optimize CVaR, which is shown to converge to a local optimum in mixed policy space. Furthermore, based on the sensitivity analysis of our bilevel MDP formulation and critical points, we develop a globally optimal algorithm. The piecewise linearity and segment convexity of the optimal pseudo‐CVaR function are also established. Our main results and algorithms are further extended to optimize the mean and CVaR simultaneously. Finally, we conduct numerical experiments relating to portfolio management to demonstrate the main results. Our work sheds light on dynamically optimizing CVaR from a sensitivity viewpoint.
Funder
National Key Research and Development Program of China
Guangdong Province Key Laboratory of Computational Science
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献