Input material reduction incentives versus scrap recycling for closed‐loop supply chains

Author:

Aydinliyim Tolga1ORCID,Çil Eren B.2ORCID,Murthy Nagesh N.2

Affiliation:

1. Zicklin School of Business, Baruch College, CUNY, New York, USA

2. Lundquist College of Business, University of Oregon, Eugene, Oregon, USA

Abstract

Motivated by interactions with a major player in the aerospace industry, we consider the relationship between a supplier of specialty material forgings and a buyer that manufactures airplane components by extensively machining down these forgings as per component design specifications. Due to high material removal costs, the buyer prefers these forgings to be as similar in geometry and size to the component as possible, that is, near‐net‐shape. The supplier, by default, is unable to deliver such near‐net‐shape forgings as per technological constraints, but can utilize costly effort and/or invest in the required technologies to achieve such capabilities. By taking into account uncertainty regarding the correspondence between supplier's effort and resulting forging size, we assess the implications of two innovative approaches for improving supply chain performance: (i) input material reduction incentives via contracting and (ii) scrap material recycling. We characterize the optimal decisions with respect to final component geometry, various costs, and which party in the supply chain controls the strategic recycling decision. We find that the supply chain should utilize both approaches in a complementary way for components with complex geometry, yet deliberately limit recycling and eliminate contracting for components with simple geometry—a strategy the buyer always implements when controlling the recycling decision. Furthermore, we show these contracting and recycling strategies to be robust by considering linear, expected cost sharing, and nonlinear contract alternatives. Finally, we study supply chain inefficiencies that result from decentralizing the recycling and/or contracting decisions, and highlight whether expected cost sharing and nonlinear contracts can outperform linear contracts.

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3