Piezo1‐mediated regulation of smooth muscle cell volume in response to enhanced extracellular matrix rigidity

Author:

Johnson Robert T.1ORCID,Solanki Reesha1ORCID,Wostear Finn1ORCID,Ahmed Sultan1,Taylor James C. K.2,Rees Jasmine1,Abel Geraad1,McColl James3,Jørgensen Helle F.2ORCID,Morris Chris J.4ORCID,Bidula Stefan1ORCID,Warren Derek T.1ORCID

Affiliation:

1. School of Pharmacy University of East Anglia Norwich UK

2. Section of Cardiorespiratory Medicine University of Cambridge, VPD Heart and Lung Research Institute Cambridge UK

3. Henry Wellcome Laboratory for Cell Imaging University of East Anglia Norfolk UK

4. School of Pharmacy University College London London UK

Abstract

AbstractBackground and PurposeDecreased aortic compliance is a precursor to numerous cardiovascular diseases. Compliance is regulated by the rigidity of the aortic wall and the vascular smooth muscle cells (VSMCs). Extracellular matrix stiffening, observed during ageing, reduces compliance. In response to increased rigidity, VSMCs generate enhanced contractile forces that result in VSMC stiffening and a further reduction in compliance. Mechanisms driving VSMC response to matrix rigidity remain poorly defined.Experimental ApproachHuman aortic‐VSMCs were seeded onto polyacrylamide hydrogels whose rigidity mimicked either healthy (12 kPa) or aged/diseased (72 kPa) aortae. VSMCs were treated with pharmacological agents prior to agonist stimulation to identify regulators of VSMC volume regulation.Key ResultsOn pliable matrices, VSMCs contracted and decreased in cell area. Meanwhile, on rigid matrices VSMCs displayed a hypertrophic‐like response, increasing in area and volume. Piezo1 activation stimulated increased VSMC volume by promoting calcium ion influx and subsequent activation of PKC and aquaporin‐1. Pharmacological blockade of this pathway prevented the enhanced VSMC volume response on rigid matrices whilst maintaining contractility on pliable matrices. Importantly, both piezo1 and aquaporin‐1 gene expression were up‐regulated during VSMC phenotypic modulation in atherosclerosis and after carotid ligation.Conclusions and ImplicationsIn response to extracellular matrix rigidity, VSMC volume is increased by a piezo1/PKC/aquaporin‐1 mediated pathway. Pharmacological targeting of this pathway specifically blocks the matrix rigidity enhanced VSMC volume response, leaving VSMC contractility on healthy mimicking matrices intact. Importantly, upregulation of both piezo1 and aquaporin‐1 gene expression is observed in disease relevant VSMC phenotypes.

Funder

British Heart Foundation

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3