Pathogenesis of the crosstalk between reproductive function and stress in animals—part 1: Hypothalamo–pituitary–adrenal axis, sympatho‐adrenomedullary system and kisspeptin

Author:

Kaiser Marianne1ORCID,Jaillardon Laetitia2

Affiliation:

1. Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences Aarhus University Tjele Denmark

2. Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering Nantes France

Abstract

AbstractStress is defined as a disruption of the body homeostasis in response to modest as well as perceived challenge. Two main physiological routes, the hypothalamic–pituitary–adrenal system (HPA) and the sympatho‐adrenomedullary system (SAM), aim to maintain or restore homeostasis by mutual interaction. SAM is quickly‐reacting as it primarily works through the nervous system—the sympathetic nervous system. In response to stress, signals are sent to activate the adrenal medulla which releases catecholamines (primarily adrenaline and norepinephrine). The catecholamines have a momentary effect on the body's organs that are prepared for a fight situation. At the same time, the stressor activates the HPA axis by signals from the brain causing secretion of the pituitary hormone adrenocorticotropic hormone (ACTH). ACTH acts on the adrenal cortex, which secretes glucocorticoids, including cortisol. Since HPA primarily works through hormones, the system is slightly slower than SAM and gives rise to a metabolic effect. While short‐term stress response is an adaptive and beneficial process, chronic or excessive stress can lead to a range of negative health outcomes including reproductive disorders and infertility. Several mechanisms have been proposed to explain the link between stress and reproduction. This includes in particular kisspeptin, which is closely related to reproduction, as it is a powerful stimulator of the Hypothalamic–pituitary–gonadal (HPG) system. The present review, through current knowledge in various male and female species, deals with the role of the SAM and the HPA, including the major action of kisspeptin and glucocorticoids that trigger the consequences of psychological or physiological stress on reproductive function.

Publisher

Wiley

Subject

Endocrinology,Animal Science and Zoology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3