Deep learning to predict lymph node status on pre‐operative staging CT in patients with colon cancer

Author:

Bedrikovetski Sergei12ORCID,Zhang Jianpeng3,Seow Warren2,Traeger Luke12,Moore James W12,Verjans Johan3,Carneiro Gustavo3,Sammour Tarik12

Affiliation:

1. Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine University of Adelaide Adelaide South Australia Australia

2. Colorectal Unit, Department of Surgery Royal Adelaide Hospital Adelaide South Australia Australia

3. Australian Institute for Machine Learning, School of Computer Science University of Adelaide Adelaide South Australia Australia

Abstract

AbstractIntroductionLymph node (LN) metastases are an important determinant of survival in patients with colon cancer, but remain difficult to accurately diagnose on preoperative imaging. This study aimed to develop and evaluate a deep learning model to predict LN status on preoperative staging CT.MethodsIn this ambispective diagnostic study, a deep learning model using a ResNet‐50 framework was developed to predict LN status based on preoperative staging CT. Patients with a preoperative staging abdominopelvic CT who underwent surgical resection for colon cancer were enrolled. Data were retrospectively collected from February 2007 to October 2019 and randomly separated into training, validation, and testing cohort 1. To prospectively test the deep learning model, data for testing cohort 2 was collected from October 2019 to July 2021. Diagnostic performance measures were assessed by the AUROC.ResultsA total of 1,201 patients (median [range] age, 72 [28–98 years]; 653 [54.4%] male) fulfilled the eligibility criteria and were included in the training (n = 401), validation (n = 100), testing cohort 1 (n = 500) and testing cohort 2 (n = 200). The deep learning model achieved an AUROC of 0.619 (95% CI 0.507–0.731) in the validation cohort. In testing cohort 1 and testing cohort 2, the AUROC was 0.542 (95% CI 0.489–0.595) and 0.486 (95% CI 0.403–0.568), respectively.ConclusionA deep learning model based on a ResNet‐50 framework does not predict LN status on preoperative staging CT in patients with colon cancer.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3