The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes

Author:

Sato Hirotoshi1ORCID

Affiliation:

1. Graduate School of Human and Environmental Studies Kyoto University Sakyo Kyoto 606‐8501 Japan

Abstract

Summary Ectomycorrhizal (EcM) symbiosis, a ubiquitous plant–fungus interaction in forests, evolved in parallel in fungi. Why the evolution of EcM fungi did not necessarily increase ecological opportunities for explosive diversification remains unclear. This study aimed to reveal the driving mechanism of the evolutionary diversification in the fungal class Agaricomycetes, specifically by testing whether the evolution of EcM symbiosis in the Late Cretaceous increased ecological opportunities. The historical character transitions of trophic state and fruitbody form were estimated based on phylogenies inferred from fragments of 89 single‐copy genes. Moreover, five analyses were used to estimate the net diversification rates (speciation rate minus extinction rate). The results indicate that the unidirectional evolution of EcM symbiosis occurred 27 times, ranging in date from the Early Triassic to the Early Paleogene. The increased diversification rates appeared to occur intensively at the stem of EcM fungal clades diverging in the Late Cretaceous, coinciding with the rapid diversification of EcM angiosperms. By contrast, the evolution of fruitbody form was not strongly linked with the increased diversification rates. These findings suggest that the evolution of EcM symbiosis in the Late Cretaceous, supposedly with coevolving EcM angiosperms, was the key drive of the explosive diversification in Agaricomycetes.

Funder

Institute for Fermentation, Osaka

Japan Society for the Promotion of Science

Science and Technology Research Partnership for Sustainable Development

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3