Isolation by environment and its consequences for range shifts with global change: Landscape genomics of the invasive plant common tansy

Author:

Briscoe Runquist Ryan1ORCID,Moeller David A.1ORCID

Affiliation:

1. Department of Plant and Microbial Biology University of Minnesota St. Paul Minnesota USA

Abstract

AbstractInvasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA. We densely sampled individuals across the expanding range and performed reduced representation sequencing to generate a dataset of 3071 polymorphic loci for 176 individuals. We used non‐spatial and spatially explicit analyses to determine the relative influences of geographic distance and environmental variation on patterns of genomic variation. We found no evidence for isolation by distance but strong evidence for isolation by environment, indicating that environmental factors may have modulated patterns of range expansion. Land use classification and soils were particularly important variables related to population structure although they operated on different spatial scales; land use classification was related to broad‐scale patterns and soils were related to fine‐scale patterns. All analyses indicated a distinctive genetic cluster in the most recently invaded portion of the range. Individuals from the far northwestern range margin were separated from the remainder of the range by reduced migration, which was associated with environmental resistance. This portion of the range was invaded primarily in the last 15 years. Ecological niche models also indicated that this cluster was associated with the expansion of the niche. While invasion is often assumed to be primarily influenced by dispersal limitation, our results suggest that ongoing invasion and range shifts with climate change may be strongly affected by environmental heterogeneity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3