Synergistic effects of electroactive antibacterial material and electrical stimulation in enhancing skin tissue regeneration: A next‐generation dermal wound dressing

Author:

Zang Xi‐Liang1,Gao Fei1,Zhang Zhao1,Shen Lin‐Hua2,Pan Yue‐Hai1

Affiliation:

1. Qingdao University Qingdao Shandong China

2. Department of Trauma Microsurgery 970 Hospital of the PLA Joint Logistic Support Force Yantai Shandong China

Abstract

AbstractObjectiveWe aimed to develop an electroactive antibacterial material for the treatment of skin wound diseases.MethodTo this aim, we modified chitosan (CS), a biocompatible polymer, by coupling it with graphene (rGO) and an antimicrobial polypeptide DOPA‐PonG1. The material's effect on skin injury healing was studied in combination with external electrical stimulation (EEM). The structure, surface composition, and hydrophilicity of the modified CS materials were evaluated using scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), and contact angle measurements. We studied NIH3T3 cells cultured with modified materials and subjected to EEM to assess viability, adhesion, and tissue repair‐related gene expression.ResultsSEM data demonstrated that rGO was distributed uniformly on the surface of the CS material, increasing surface roughness, and antimicrobial peptides had minimal impact on surface morphology. FTIR confirmed the uniform distribution of rGO and antibacterial peptides on the material surface. Both rGO and DOPA‐PonG1 enhanced the hydrophilicity of CS materials, with rGO also improving tensile strength. The dual modification of CS with rGO and DOPA‐PonG1 synergistically increased antibacterial efficacy. Cellular events and gene expression relevant to tissue repair process were enhanced by these modifications. Furthermore, EEM accelerated epidermal regeneration more than the material alone. In a rat skin wound model, DOPA‐PonG1@CS/rGO dressing combined with electrical stimulation exhibited accelerated healing of skin defect.ConclusionOverall, our results demonstrate that CS materials modified with rGO and DOPA‐PonG1 have increased hydrophilicity, antibacterial characteristics, and tissue regeneration capacities. This modified material in conjunction with EEM hold promise for the clinical management for dermal wounds.

Publisher

Wiley

Subject

Dermatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3