Nitrogen deposition suppresses ephemeral post‐fire plant diversity

Author:

Valliere Justin M.12ORCID,Irvine Irina C.3ORCID,Allen Edith B.2ORCID

Affiliation:

1. Department of Plant Sciences University of California Davis Davis California USA

2. Department of Botany and Plant Sciences University of California Riverside Riverside California USA

3. National Park Service San Francisco California USA

Abstract

AbstractFire is a dominant force shaping patterns of plant diversity in Mediterranean‐type ecosystems. In these biodiversity hotspots, including California's endangered coastal scrub, many species remain hidden belowground as seeds and bulbs, only to emerge and flower when sufficient rainfall occurs after wildfire. The unique adaptations possessed by these species enable survival during prolonged periods of unfavorable conditions, but their continued persistence could be threatened by nonnative plant invasion and environmental change. Furthermore, their fleeting presence aboveground makes evaluating these threats in situ a challenge. For example, nitrogen (N) deposition resulting from air pollution is a well‐recognized threat to plant diversity worldwide but impacts on fire‐following species are not well understood. We experimentally evaluated the impact of N deposition on post‐fire vegetation cover and richness for three years in stands of coastal sage scrub that had recently burned in a large wildfire in southern California. We installed plots receiving four levels of N addition that corresponded to the range of N deposition rates in the region. We assessed the impact of pre‐fire invasion status on vegetation dynamics by including plots in areas that had previously been invaded by nonnative grasses, as well as adjacent uninvaded areas. We found that N addition reduced native forb cover in the second year post‐fire while increasing the abundance of nonnative forbs. As is typical in fire‐prone ecosystems, species richness declined over the three years of the study. However, N addition hastened this process, and native forb richness was severely reduced under high N availability, especially in previously invaded shrublands. An indicator species analysis also revealed that six functionally and taxonomically diverse forb species were especially sensitive to N addition. Our results highlight a new potential mechanism for the depletion of native species through the suppression of ephemeral post‐fire bloom events.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3