Electronic relaxation mechanism of 9‐methyl‐2,6‐diaminopurine and 2,6‐diaminopurine‐2′‐deoxyribose in solution

Author:

Ortiz‐Rodríguez Luis A.1ORCID,Caldero‐Rodríguez Naishka E.1,Seth Sourav Kanti1,Díaz‐González Karitza1,Crespo‐Hernández Carlos E.1ORCID

Affiliation:

1. Department of Chemistry Case Western Reserve University Cleveland Ohio USA

Abstract

AbstractProlonged ultraviolet exposure results in the formation of cyclobutane pyrimidine dimers (CPDs) in RNA. Consequently, prebiotic photolesion repair mechanisms should have played an important role in the maintenance of the structural integrity of primitive nucleic acids. 2,6‐Diaminopurine is a prebiotic nucleobase that repairs CPDs with high efficiency when incorporated into polymers. We investigate the electronic deactivation pathways of 2,6‐diaminopurine‐2′‐deoxyribose and 9‐methyl‐2,6‐diaminopurine in acetonitrile and aqueous solution to shed light on the photophysical and excited state properties of the 2,6‐diaminopurine chromophore. Evidence is presented that both are photostable compounds exhibiting similar deactivation mechanisms upon the population of the S1(ππ* La) state at 290 nm. The mechanism involves deactivation through the C2‐ and C6‐reaction coordinates and >99% of the excited state population decays through nonradiative pathways involving two conical intersections with the ground state. The radiative and nonradiative lifetimes are longer in aqueous solution compared to acetonitrile. While τ1 is similar in both derivatives, τ2 is ca. 1.5‐fold longer in 2,6‐diaminopurine‐2′‐deoxyribose due to a more efficient trapping in the S1(ππ* La) minimum. Therefore, 2,6‐diaminopurine could have accumulated in significant quantities during prebiotic times to be incorporated into non‐canonical RNA and play a significant role in its photoprotection.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3