Combined effect of stimulation and electromagnetic induction on absence seizure inhibition in coupled thalamocortical circuits

Author:

Xie Yan1,Zhang Hudong1,Pan Yufeng1,Chai Yuan1ORCID

Affiliation:

1. School of Mathematics and Physics Shanghai University of Electric Power Shanghai China

Abstract

AbstractDeep brain stimulation (DBS) and electromagnetic induction are new techniques that are increasingly used in modern epilepsy treatments; however, the mechanism of action remains unclear. In this study, we constructed a bidirectional‐coupled cortico‐thalamic model, based on which we proposed three regulation schemes: isolated regulation of DBS, isolated regulation of electromagnetic induction and combined regulation of the previous two. In particular, we introduced DBS with a lower amplitude and considered the influence of electromagnetic induction caused by the transmembrane current on the membrane potential. The most striking finding of this study is that the three therapeutic schemes could effectively control abnormal discharge, and combined regulation could reduce the occurrence of epileptic seizures more effectively. The present study bridges the gap between the bidirectional coupling model and combined control. In this way, the damage induced by electrical stimulation of the patient's brain tissue could be reduced, and the abnormal physiological discharge pattern of the cerebral cortex was simultaneously regulated by different techniques. This work opens new avenues for improving brain dysfunction in patients with epilepsy, expands ideas for promoting the development of neuroscience and is meaningful for improving the health of modern society and developing the field of science.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3