Affiliation:
1. State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
2. Department of Applied Biology East China University of Science and Technology Shanghai China
Abstract
Abstract
Aims
Assessing the role of ramRsl, a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in Streptomyces lincolnensis.
Methods and Results
The gene ramRsl was deleted from the wild-type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild-type features, whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using electrophoretic mobility shift assay and XylE reporter assay, that glnR is a novel direct target of RamR.
Conclusions
Altogether, these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR.
Significance and Impact of the Study
We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic-producing Streptomyces strains might also increase their antibiotic-producing abilities.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Postdoctoral Science Foundation of China
Research Program of State Key Laboratory of Bioreactor Engineering
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献