Syncopation and synchrony: Phenological dynamics of Pyropia nereocystis (Bangiophyceae) in central California

Author:

Gossard Daniel J.1ORCID

Affiliation:

1. Moss Landing Marine Laboratories Moss Landing California USA

Abstract

AbstractPyropia nereocystis is an annual northeastern Pacific‐bladed bangialean species whose macroscopic stage epiphytized the annual canopy forming bull kelp Nereocystis luetkeana. I examined three in situ facets of these epiphyte‐host dynamics in the central California region: (1) spatial and temporal variation in the presence of P. nereocystis epiphytes as a function of host density, (2) the relationship between individual host morphology and epiphytic P. nereocystis biomass, and (3) the ecophysiological growth ramifications for subtidal transplants of both life stages of P. nereocystis. Swath canopy surveys and whole host collections were conducted at five sites between November 2017 and February 2019. Additionally, transplants of P. nereocystis gametophytes and sporophytes were conducted across multiple subtidal depths. I observed temporal changes in the proportions of hosts epiphytized by P. nereocystis, with differences in seasonal persistence of P. nereocystis among sites and between years. Biomass of P. nereocystis was positively correlated with individual host stipe length, stipe surface area, and the primary principal component (PC) of stipe morphometrics denoted by principal component analysis (PCA). Gametogenesis in P. nereocystis epiphytes was spatially heterogeneous and limited for the 2018–2019 cohort due to comprehensive removal of hosts by the February 2019 sampling period. Transplants of P. nereocystis gametophytes yielded similar growth responses among depths, and sporophyte (conchocelis) transplant areal growth was positively correlated with transplant depth. These findings detail spatiotemporal complexity and multi‐scale (individual, site, and whole region) phenological nuances for central Californian P. nereocystis epiphytes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3