Physiology and proteomics analyses reveal the response mechanisms of Rhizophora mucronata seedlings to prolonged complete submergence

Author:

Piro A.1ORCID,Mazzuca S.1,Phandee S.23,Jenke M.4,Buapet P.23ORCID

Affiliation:

1. Laboratorio di Biologia e Proteomica Vegetale (La.Bio.Pro.Ve.), Dipartimento di Chimica e Tecnologie Chimiche Università della Calabria Rende Italy

2. Division of Biological Science, Faculty of Science Prince of Songkla University Hatyai, Songkhla Thailand

3. Coastal Oceanography and Climate Change Research Center Prince of Songkla University Hatyai, Songkhla Thailand

4. Special Research Unit for Mangrove Silviculture, Faculty of Forestry Kasetsart University Chatuchak, Bangkok Thailand

Abstract

Abstract Mangrove seedlings are subject to natural tidal inundation, while occasional flooding may lead to complete submergence. Complete submergence reduces light availability and limits gas exchange, affecting several plant metabolic processes. The present study focuses on Rhizophora mucronata, a common mangrove species found along the coasts of Thailand and the Malay Peninsula. To reveal response mechanisms of R. mucronata seedlings to submergence, a physiological investigation coupled with proteomic analyses of leaf and root tissues was carried out in plants subjected to 20 days of control (drained) or submerged conditions. Submerged seedlings showed decreased photosynthetic activity, lower stomatal conductance, higher total antioxidant capacity in leaves and higher lipid peroxidation in roots than control plants. At the same time, tissue nutrient ion content displayed organ‐specific responses. Proteome analysis revealed a significant change in 240 proteins in the leaves and 212 proteins in the roots. In leaves, most differentially accumulated proteins (DAPs) are associated with nucleic acids, stress response, protein transport, signal transduction, development and photosynthesis. In roots, most DAPs are associated with protein metabolic process, response to abiotic stimulus, nucleic acid metabolism and transport. Our study provides a comprehensive understanding of submergence responses in R. mucronata seedlings. The results suggest that submergence induced multifaceted stresses related to light limitation, oxidative stress and osmotic stress, but the responses are organ specific. The results revealed many candidate proteins which may be essential for survival of R. mucronata under prolonged submergence.

Funder

Prince of Songkla University

Università della Calabria

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3