Spatial variation in grassland vegetation and herbage mass in the Ejina oasis along the Heihe River in the southern Gobi Desert, China

Author:

Shiyomi Masae12ORCID,Chen Jun3,Yamamura Yasuo1,Hori Yoshimichi1

Affiliation:

1. Ibaraki University Mito Japan

2. National Northeast Agricultural University Harbin China

3. College of Grassland Agriculture Northwest A&F University Yangling Shaanxi China

Abstract

AbstractOur study area, Ejina, is located in the southern Gobi Desert, Inner Mongolia, China, where the annual precipitation is <50 mm and the annual potential evaporation is >3,600 mm. The Heihe River flows from the Qilian Range through the study area, and the desert landscape along the river includes oases formed by forests and grasslands. We established a survey area of approximately 1.5 ha in grassland facing a seasonal swamp, a branch of the Heihe River. We posed the following questions in this desert grassland: (1) how do soil water content (SWC) and salinity change with distance from the riverbank? (2) How do vegetation, aboveground biomass, and species richness change with distance from the riverbank? (3) How much can be supplied to grazing animals, and how many animals can be grazed? Our results indicated that (1) the SWC is high within 20 m of the riverbank and low beyond 20 m, the standing biomass is positively correlated with SWC, but there was no evidence of a correlation between salinity and distance to water; the electrical conductivity was high both inland and adjacent to the riparian swamp. (2) Vegetation could be classified to six classes, following a gradient from the riverbank (swamp margin) to the dry inland area beyond 20 m from the riverbank. Species richness and aboveground biomass were highly correlated. Classification result led us to recommend that generalist species tolerant of the distinct moisture gradient in the site be used in restoration efforts. (3) Per‐hectare aboveground biomass was 478.93 dry weight (dw) kg, 321.2 ha of equivalent grassland would be required to graze 100 goats annually.

Funder

Scientific Startup Foundation for Doctors of Northwest A and F University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3