The characterization of Pluronic P123 micelles in the presence of sunscreen agents

Author:

Ragu Pauline1,Ruparelia Ketan1,Venero Diego Alba2,Mansour Omar T.1ORCID

Affiliation:

1. Leicester School of Pharmacy, Faculty of Health and Life Sciences De Montfort University Leicestershire UK

2. Science and Technology Facilities Council, Rutherford Appleton Laboratory ISIS Neutron and Muon Source Oxfordshire UK

Abstract

AbstractObjectivesThe triblock copolymer Pluronic® is widely used in the personal care industry, including sun protection, for its film‐forming and solubilization capabilities. In this study, the effect of three commonly used organic UV filters (ethylhexyl methoxycinnamate [EMC], ethylhexyl triazone [EHT], and avobenzone [AVB]) on the structure of Pluronic P123 micelles was investigated.MethodsThe Pluronic P123 micelle structure has been investigated using dynamic surface tension, nuclear magnetic resonance (NMR) and small‐angle neutron scattering (SANS).ResultsDynamic surface tension results show strong interactions between the UV filters and Pluronic® evident by sharp changes in the surface activity of the latter. The NMR results have revealed the creation of a hydrophobic microenvironment special to the Pluronic PPO core group in the presence of UV filters. Some interaction with the hydrophilic EO was also recorded, albeit weaker. This is further confirmed by SANS, where the Pluronic P123 micelles interacted with varying strengths with the UV filters, resulting in sharp changes in their size and shape.ConclusionsWe have demonstrated the sensitivity of the Pluronic P123 micelles to the presence of various UVA/B filters. The micelles shape varied from spherical to cylindrical as the concentration and type of the UV filters were varied. These variations in the shape are expected to have a significant effect on the sun protection factor (SPF), as it affects the solubilization of the UV filters within a formulation in addition to the formulations' rheological profile and film‐forming behaviour.

Publisher

Wiley

Subject

Colloid and Surface Chemistry,Dermatology,Drug Discovery,Pharmaceutical Science,Aging,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3