Effects of pollination and plant genotype on Ustilago maydis disease development on the ears of maize inbreds and maize‐teosinte near‐isogenic lines

Author:

Bhatta Usha1,Smith Shavannor M.1ORCID

Affiliation:

1. Department of Plant Pathology The University of Georgia Athens Georgia USA

Abstract

AbstractUstilago maydis, the fungus that causes corn smut disease, leads to significant economic losses in maize cultivars. A key feature of successful plant pathogens is their ability to utilize the plant–pathogen relationship to influence disease progression. Greenhouse experiments examined how pollination and plant genotype affect disease incidence and severity of U. maydis infection. Four U. maydis susceptible maize inbreds (B73, H95, Mo17, and Golden Bantam), and two U. maydis resistant maize‐teosinte near‐isogenic lines (NIL1 and NIL2) were utilized for this work. Three‐hundred and sixty plants (pollinated and unpollinated) from the six plant genotypes were inoculated with U. maydis and assessed based on five phenotypic traits [(1) disease incidence, (2) gall number, (3) gall weight, (4) disease severity, and (5) area under disease progress curve]. All pollinated plants demonstrated significantly (p < .001) lower disease incidence, gall number, gall weight, area under the disease progress curve, and severity in comparison to the unpollinated plants. Both pollinated resistant NILs demonstrated significantly (p < .001) less disease development than the pollinated susceptible maize plants and two unpollinated NILs. Therefore, disease resistance to U. maydis was dependent upon pollination and plant genotype. This provides novel evidence that pollination can significantly improve resistance to U. maydis in different plant genotypes. Enhanced disease resistance observed in the resistant NILs after pollination indicates pollination‐mediated resistance is one of the resistance mechanisms functioning in the resistant NILs. Integration of pollination‐mediated resistance and resistance introgressed from a maize progenitor will be useful for improving resistance to U. maydis and management of the disease.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3