The binding affinity‐dependent inhibition of cell growth and viability by DNA sulfur‐binding domains

Author:

Wang Yuli1,Ge Fulin1,Liu Jinling1,Hu Wenyue1,Liu Guang1,Deng Zixin1,He Xinyi1ORCID

Affiliation:

1. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai People's Republic of China

Abstract

AbstractIncreasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT‐DNA. PT‐dependent restriction enzymes (PDREs) bind PT‐DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 μM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT‐DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT‐DNA as the template. Our findings suggest that DNA modification‐targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction‐modification systems and epigenetic readers.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3