Affiliation:
1. MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering South China University of Technology Guangzhou China
2. International Department of Guangdong Experimental High School Guangzhou China
Abstract
AbstractXanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are involved in the production and reabsorption of uric acid, respectively. However, the currently available individual XOR‐ or URAT1‐targeted drugs have limited efficacy. Thus, strategies for combining XOR inhibitors with uricosuric drugs have been developed. Previous virtual screening identified Compounds 1–5 as hits for the potential dual inhibition of XOR/URAT1. Nevertheless, in vitro experiments yielded unsatisfactory results. The first round of optimization work on those hits was performed, and two series of compounds were designed and synthesized. Compounds of the A series exerted moderate inhibitory effects on URAT1, but extremely weak inhibitory effects on XOR. Compounds of the B series exerted strong inhibitory effects on both XOR and URAT1. B5 exhibited the greatest inhibitory activity, with similar inhibitory effects on XOR and URAT1. The half maximal inhibitory concentration (IC50) of XOR was 0.012 ± 0.001 μM, equivalent to that of febuxostat (IC50 = 0.010 ± 0.001 μM). The IC50 of URAT1 was 30.24 ± 3.46 μM, equivalent to that of benzbromarone (IC50 = 24.89 ± 7.53 μM). Through this optimization, the in vitro activity of most compounds of the A and B series against XOR and URAT1 was significantly improved versus that of the hits. Compound B5 should be further investigated.
Funder
Guangzhou Municipal Science and Technology Project
Subject
Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献