Arylidene and amino spacer‐linked rhodanine‐quinoline hybrids as upgraded antimicrobial agents

Author:

Khalifa Zebabanu1,Upadhyay Rachana1,Patel Amit B.1ORCID

Affiliation:

1. Department of Chemistry Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat) Daman India

Abstract

AbstractAntibiotic resistance associated with various microorganisms such as Gram‐positive, Gram‐negative, fungal strains, and multidrug‐resistant tuberculosis increases the risk of healthcare survival. Preliminary therapeutics becoming ineffective that might lead to noteworthy mortality presents a crucial challenge for the scientific community. Hence, there is an urgent need to develop hybrid compounds as antimicrobial agents by combining two or more bioactive heterocyclic moieties into a single molecular framework with fewer side effects and a unique mode of action. This review highlights the recent advances (2013–2023) in the pharmacology of rhodanine‐linked quinoline hybrids as more effective antimicrobial agents. In the drug development process, linker hybrids acquire the top position due to their excellent π‐stacking and Van der Waals interaction with the DNA active sites of pathogens. A molecular hybridization strategy has been optimized, indicating that combining these two bioactive moieties with an arylidene and an amino spacer linker increases the antimicrobial potential and reduces drug resistance. Moreover, the structure–activity relationship study is discussed to express the role of various functional groups in improving and decrementing antimicrobial activities for rational drug design. Also, a linker approach may accelerate the development of dynamic antimicrobial agents through molecular hybridization.

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3