Thermal variability induces sex‐specific morphometric changes in zebrafish (Danio rerio)

Author:

Grigg A. G.1ORCID,Lowi‐Merri T. M.2ORCID,Hutchings J. A.134,Massey M. D.1ORCID

Affiliation:

1. Dalhousie University Halifax Nova Scotia Canada

2. University of Toronto Toronto Ontario Canada

3. Flødevigen Marine Research Station Institute of Marine Research Bergen Norway

4. Department of Natural Sciences University of Agder Kristiansand Norway

Abstract

AbstractIn nature, organisms are exposed to variable environmental conditions that impact their performance and fitness. Despite the ubiquity of environmental variability, substantial knowledge gaps in our understanding of organismal responses to nonconstant thermal regimes remain. In the present study, using zebrafish (Danio rerio) as a model organism, we applied geometric morphometric methods to examine how challenging but ecologically realistic diel thermal fluctuations experienced during different life stages influence adult body shape, size, and condition. Zebrafish were exposed to either thermal fluctuations (22–32°C) or a static optimal temperature (27°C) sharing the same thermal mean during an early period spanning embryonic and larval ontogeny (days 0–30), a later period spanning juvenile and adult ontogeny (days 31–210), or a combination of both. We found that body shape, size, and condition were affected by thermal variability, but these plasticity‐mediated changes were dependent on the timing of ontogenetic exposure. Notably, after experiencing fluctuating temperatures during early ontogeny, females displayed a deeper abdomen while males displayed an elongated caudal peduncle region. Moreover, males displayed beneficial acclimation of body condition under lifelong fluctuating temperature exposure, whereas females did not. The present study, using ecologically realistic thermal regimes, provides insight into the timing of environmental experiences that generate phenotypic variation in zebrafish.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3