Damage on grapevine cv. Niagara Rosada leaves caused by the combined effect of temperature and Asian grapevine leaf rust (Neophysopella tropicalis)

Author:

Rasera Júlia B.1,Appezzato‐da‐Glória Beatriz1,Ribeiro Rafael V.2,Nogueira‐Júnior Antônio F.3,Amorim Lilian3ORCID

Affiliation:

1. Department of Biological Science, ESALQ University of São Paulo Piracicaba São Paulo Brazil

2. Laboratory of Crop Physiology, Department of Plant Biology University of Campinas Campinas São Paulo Brazil

3. Department of Plant Pathology, ESALQ University of São Paulo Piracicaba São Paulo Brazil

Abstract

AbstractAsian grapevine leaf rust (AGLR), caused by Neophysopella tropicalis, is a problem for viticulture, especially in latitudes lower than 25° S, which include the most significant production regions in Brazil. Climate change has raised new concerns in agriculture as temperature can affect the resistance of plants to pathogens. With the aim of understanding how air temperature rise affects the AGLR pathosystem, measurements of leaf gas exchange and epidemiological and histopathological analyses were carried out on control and inoculated leaves of Vitis labrusca ‘Niagara Rosada’ grown at 25°C and 30°C. The lesion density and rust severity were higher at 25°C than 30°C, and the ratio between adaxial surface necrosis and the abaxial surface area occupied by pustules was >1 only at 30°C, presenting a necrosis not associated to the pathogen lesion. In fact, leaf necrosis was identified on control plants kept at 30°C and associated with gerontoplasts, representing accelerated leaf senescence. The AGLR pathogen reduced gas exchange and photosystem II activities at 25°C, with no difference between control and inoculated plants at 30°C. Our results indicate that AGLR is sensitive to increasing air temperature. However, the accelerated leaf senescence caused by the combination of N. tropicalis infection and temperature on Niagara Rosada can lead to high leaf damage.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3