MicroRNA 4407 modulates nodulation in soybean by repressing a root‐specific ISOPENTENYLTRANSFERASE (GmIPT3)

Author:

Fan Kejing1ORCID,Wang Zhili1ORCID,Sze Ching‐Ching1ORCID,Niu Yongchao1ORCID,Wong Fuk‐Ling1ORCID,Li Man‐Wah1ORCID,Lam Hon‐Ming1ORCID

Affiliation:

1. School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Shatin Hong Kong SAR China

Abstract

Summary MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root‐specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild‐type GmIPT3 or a miR4407‐resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root‐derived CK. Overall, our data revealed a new miRNA‐mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3