Comparative pharmacokinetics of a tumour-targeting therapy candidate rh-IFNα2a–NGR with rh-IFNα2a administered intravenously in mice and rats

Author:

Wang Xue-Xi1,Lu Li2,Song Chun-Li2,Qian Wei-Na1,Zhang Sheng-Yan2,Zhang Ying-Qi3,Wu Yong-Jie2

Affiliation:

1. Institute of Integrative Traditional & Western Medicine, Lanzhou University, Lanzhou, Gansu, China

2. Department of Pharmacology, School of Basic Medicine, Lanzhou University, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, China

3. Biotechnology Center of The Fourth Military Medical University, Xi'an, China

Abstract

Abstract Objectives rh-IFNα2a-NGR is a promising anti-tumor candidate. The aim of present study was to compare pharmacokinetics of rh-IFNα2a-NGR with rh-IFNα2a. Methods Pharmacokinetics and elimination were investigated after intravenous administration to mice and rats. Compared tumor and tissue distribution profiles between rh-IFNα2a-NGR and rh-IFNα2a were illustrated in the tumor transplanted mice of SP2/0 myeloma. Double antibody sandwich ELISA method was used to assess the level of both rh-IFNα2a-NGR and rh-IFNα2a in serum, tissue, bile and urine. Key findings After a single intravenous administration, the pharmacokinetic characters of rh-IFNα2a-NGR and rh-IFNα2a were described using a two-compartment model. No significant differences were observed between the two drugs in pharmacokinetic and elimination data. However, the concentration of rh-IFNα2a-NGR in tumor was 5.34 times and 1.52 times as high as that of rh-IFNα2a at 0.5 h (P < 0.01) and 1 h. In addition, immunohistochemical stain displayed rh-IFNα2a-NGR was predominantly located in tumor vascular tissues. Conclusions rh-IFNα2a-NGR could be an agent for tumor vascular-targeting therapy and these findings provided references for further clinical study.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3