Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: influence of composition and charge

Author:

Cichewicz Allie1,Pacleb Chelsea1,Connors Ashley1,Hass Martha A1,Lopes Luciana B1

Affiliation:

1. Albany College of Pharmacy and Health Sciences, Albany, NY, USA

Abstract

Abstract Objectives To assess whether the composition and charge of microemulsions affect their ability to simultaneously deliver α-tocopherol and lipoic acid into viable skin layers. Methods α-Tocopherol and lipoic acid were added (1.1 and 0.5% w/w, respectively) to decylglucoside-based microemulsions containing mono-dicaprylin. Microemulsions containing surfactant : oil : water (w/w/w) at 60 : 30 : 10 (ME-O) and 46 : 23 : 31 (ME-W), as well as a cationic form of ME-W containing 1% phytosphingosine (ME-Wphy) were characterized, and their ability to disrupt the skin barrier and deliver the antioxidants in vitro in the skin was evaluated. Antioxidant activity in ME-Wphy-treated skin was assessed using the thiobarbituric acid-reactive substances (TBARS) assay. Key findings The internal phase diameters of microemulsions ranged between 42 and 55 nm; phytosphingosine addition and pH adjustment to 5.0 increased zeta potential from −4.3 to +29.1 mV. ME-O displayed w/o structure, whereas ME-W and ME-Wphy were consistent with o/w. Microemulsions affected skin electrical resistance and transepidermal water loss, but did not affect lipoic acid penetration. α-Tocopherol delivery increased following the order ME-O < ME-W < ME-Wphy. ME-Wphy presented suitable short-term stability. The antioxidants delivered by ME-Wphy decreased TBARS cutaneous levels. Conclusions Even though microemulsion structure only affected tocopherol penetration, delivered levels of both antioxidants were sufficient for a decrease in TBARS, supporting their use for enhanced protection.

Funder

NIH

PhRMA foundation

Albany College of Pharmacy and Health Sciences

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3