Clustering multivariate time series using energy distance

Author:

Davis Richard A.1ORCID,Fernandes Leon1,Fokianos Konstantinos2ORCID

Affiliation:

1. Department of Statistics Columbia University New York USA

2. Department of Mathematics and Statistics University of Cyprus Nicosia Cyprus

Abstract

A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Székely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure the separation between the finite‐dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally, the methodology is applied to two examples; one involves the GDP of selected countries and the other is the population size of various states in the U.S.A. in the years 1900–1999.

Funder

National Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Reference38 articles.

1. Strong laws for 𝐿- and 𝑢-statistics

2. Time-series clustering – A decade review

3. Generalized ward and related clustering problems;Batagelj V;Classification and Related Methods of Data Analysis,1988

4. A periodogram-based metric for time series classification

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3